Cargando…
Structural identifiability of cyclic graphical models of biological networks with latent variables
BACKGROUND: Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from expe...
Autores principales: | Wang, Yulin, Lu, Na, Miao, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906697/ https://www.ncbi.nlm.nih.gov/pubmed/27296452 http://dx.doi.org/10.1186/s12918-016-0287-y |
Ejemplares similares
-
Parameter identifiability-based optimal observation remedy for biological networks
por: Wang, Yulin, et al.
Publicado: (2017) -
Identifying gene regulatory network rewiring using latent differential graphical models
por: Tian, Dechao, et al.
Publicado: (2016) -
Learning Latent Variable Gaussian Graphical Model for Biomolecular Network with Low Sample Complexity
por: Wang, Yanbo, et al.
Publicado: (2016) -
Identification of microbial interaction network: zero-inflated latent Ising model based approach
por: Zhou, Jie, et al.
Publicado: (2020) -
Bayesian modeling of ChIP-chip data using latent variables
por: Wu, Mingqi, et al.
Publicado: (2009)