Cargando…

Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation

BACKGROUND: Galectin-3 is a marker of myocardial inflammation and fibrosis shown to correlate with morbidity and mortality in heart failure (HF). We examined the utility of galectin-3 as a marker of the severity of HF, the response of galectin-3 levels to ventricular assist device (LVAD) implantatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Coromilas, Ellie, Que-Xu, Em-Claire, Moore, D’Vesharronne, Kato, Tomoko S., Wu, Christina, Ji, Ruiping, Givens, Raymond, Jorde, Ulrich P., Takayama, Hiroo, Naka, Yoshifumi, George, Isaac, Mancini, Donna, Schulze, P. Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906704/
https://www.ncbi.nlm.nih.gov/pubmed/27301475
http://dx.doi.org/10.1186/s12872-016-0298-z
Descripción
Sumario:BACKGROUND: Galectin-3 is a marker of myocardial inflammation and fibrosis shown to correlate with morbidity and mortality in heart failure (HF). We examined the utility of galectin-3 as a marker of the severity of HF, the response of galectin-3 levels to ventricular assist device (LVAD) implantation or heart transplantation (HTx), and its use as a prognostic indicator. METHODS: Plasma galectin-3 was measured using a commercially available ELISA assay in patients with stable HF (n = 55), severe HF (n = 63), at 3 (n = 17) and 6 (n = 14) months post-LVAD and at LVAD explantation (n = 23), patients following HTx (n = 85) and healthy controls (n = 30). RESULTS: Galectin-3 levels increase with the severity of HF (severe HF: 28.2 ± 14, stable HF: 19.7 ± 13, p = 0.001; controls: 13.2 ± 9 ng/ml, p = 0.02 versus stable HF). Following LVAD implantation, galectin-3 levels are initially lower (3 months: 23.7 ± 9, 6 months: 21.7 ± 9 versus 29.2 ± 14 ng/ml implantation; p = NS) but are higher at explantation (40.4 ± 19 ng/ml; p = 0.005 versus pre-LVAD). Galectin-3 levels >30 ng/ml are associated with lower survival post-LVAD placement (76.5 % versus 95.0 % at 2 years, p = 0.009). After HTx, galectin-3 levels are lower (17.8 ± 7.1 ng/ml post-HTx versus 28.2 ± 14 pre-HTx; p < 0.0001). Patients with coronary allograft vasculopathy (CAV) post-HTx showed higher galectin-3 levels (20.5 ± 8.8 ng/ml versus 16.8 ± 6.3, p = 0.1) and the degree of CAV correlated with levels of galectin-3 (r(2) = 0.17, p < 0.0001). CONCLUSIONS: Galectin-3 is associated with the severity of HF, exhibits dynamic changes during mechanical unloading and predicts survival post-LVAD. Further, galectin-3 is associated with the development on CAV post-HTx. Galectin-3 might serve as a novel biomarker in patients with HF, during LVAD support and following HTx.