Cargando…
Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study
BACKGROUND AND OBJECTIVES: The most prevalent and worldwide oral disease is dental caries that affects a significant proportion of the world population. There are some classical approaches for control, prevention and treatment of this pathologic condition; however, the results are still not complete...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906725/ https://www.ncbi.nlm.nih.gov/pubmed/27307974 |
Sumario: | BACKGROUND AND OBJECTIVES: The most prevalent and worldwide oral disease is dental caries that affects a significant proportion of the world population. There are some classical approaches for control, prevention and treatment of this pathologic condition; however, the results are still not completely successful. Therefore new methods are needed for better management of this important challenge. Chitosan is a natural and non-toxic polysaccharide with many biological applications, particularly as an antimicrobial agent. Chitosan nanoparticle is a bioactive and environment friendly material with unique physicochemical properties. The aim of the present study was to investigate the antimicrobial effect of chitosan and nano-chitosan on the most important cariogenic streptococci. MATERIALS AND METHODS: For evaluation of antimicrobial effect of chitosan and nano-chitosan against oral streptococci broth micro-dilution method was carried out for four bacterial species; Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguis and Streptococcus salivarius. Also the effect of these materials on adhesion of above bacteria was evaluated. One-way ANOVA and post hoc Tukey test were used for statistical analysis. RESULTS: The MICs of chitosan for S. mutans, S. sanguis, S. salivarius and S. sobrinus were 1.25, 1.25, 0.625 and 0.625 mg/mL, respectively. The MIC of chitosan nanoparticle for S. mutans, S. salivarius and S. sobrinus was 0.625 mg/mL and for S. sanguis was 0.312 mg/mL. Chitosan and chitosan nanoparticles at a concentration of 5 mg/mL also reduced biofilm formation of S. mutans up to 92.5% and 93.4%, respectively. CONCLUSION: The results of this study supported the use of chitosan and chitosan nanoparticles as antimicrobial agents against cariogenic Streptococci. |
---|