Cargando…

The antibacterial peptide from Bombyx mori cecropinXJ induced growth arrest and apoptosis in human hepatocellular carcinoma cells

CecropinXJ is a cationic antimicrobial peptide originally isolated from the larvae of Bombyx mori. The anticancer effect of cecropinXJ has been reported in various tumor cells, including leukemia, gastric and esophageal cancer cells. However, the activity of cecropinXJ on hepatocellular carcinoma (H...

Descripción completa

Detalles Bibliográficos
Autores principales: XIA, LIJIE, WU, YANLING, MA, JI, YANG, JIANHUA, ZHANG, FUCHUN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906808/
https://www.ncbi.nlm.nih.gov/pubmed/27347099
http://dx.doi.org/10.3892/ol.2016.4601
Descripción
Sumario:CecropinXJ is a cationic antimicrobial peptide originally isolated from the larvae of Bombyx mori. The anticancer effect of cecropinXJ has been reported in various tumor cells, including leukemia, gastric and esophageal cancer cells. However, the activity of cecropinXJ on hepatocellular carcinoma (HCC) and its underlying mechanism have not been investigated to date. Therefore, the present study investigated the efficacy and associated mechanism of cecropinXJ in Huh-7 cells. Flow cytometric analysis was performed to determine the presence of cell cycle arrested and apoptotic cells. CecropinXJ significantly inhibited the growth of Huh-7 cells in a dose- and time-dependent manner. CecropinXJ treatment for 24 h induced S cell cycle arrest and apoptosis, in addition to loss of the mitochondrial membrane potential, in hepatoma cells. CecropinXJ induced HCC cell apoptosis by activating caspase-3 and poly(ADP-ribose) polymerase. Furthermore, cecropinXJ downregulated the expression of B-cell lymphoma 2 (Bcl-2), while upregulated the expression of Bcl-2-associated death promoter and Bcl-2-associated X protein. In conclusion, the results of the present study suggest that cecropinXJ may be an active anti-HCC agent and provide novel insights into the mechanism of cecropinXJ.