Cargando…
Concentration of neddylation-related molecules in paranodal myelin of the peripheral nervous system
Neddylation is a reversible post-translational modification in which a small ubiquitin-like molecule called NEDD8 covalently binds to substrate proteins. Although a recent study suggests that neddylation is essential for formation and maintenance of dendritic spines in the brain, the role of this pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906812/ https://www.ncbi.nlm.nih.gov/pubmed/26860454 http://dx.doi.org/10.2183/pjab.92.56 |
Sumario: | Neddylation is a reversible post-translational modification in which a small ubiquitin-like molecule called NEDD8 covalently binds to substrate proteins. Although a recent study suggests that neddylation is essential for formation and maintenance of dendritic spines in the brain, the role of this protein modification in the peripheral nerves is wholly unknown. In this study, we demonstrate that neddylation-related molecules, NEDD8 and DCUN1D2 (defective in cullin neddylation 1, domain containing 2), were concentrated at the paranode of peripheral myelin, in addition to the myelinated and unmyelinated Schwann cell bodies. These proteins were localized mainly within larger fibers, but not in fibers with small diameters. Developmental analyses showed that these molecules first appeared at the paranode during later stages of myelination, and this characteristic distribution disappeared in sulfatide-deficient mice in which paranodal axo-glial junctions were disrupted. These results suggest that the myelin paranode may be one of the regions where neddylation occurs within the peripheral nerves. |
---|