Cargando…

Improved data analysis for the MinION nanopore sequencer

The Oxford Nanopore MinION sequences individual DNA molecules using an array of pores that read nucleotide identities based on ionic current steps. We evaluated and optimized MinION performance using M13 genomic dsDNA. Using expectation-maximization (EM) we obtained robust maximum likelihood (ML) es...

Descripción completa

Detalles Bibliográficos
Autores principales: Jain, Miten, Fiddes, Ian, Miga, Karen H., Olsen, Hugh E., Paten, Benedict, Akeson, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907500/
https://www.ncbi.nlm.nih.gov/pubmed/25686389
http://dx.doi.org/10.1038/nmeth.3290
Descripción
Sumario:The Oxford Nanopore MinION sequences individual DNA molecules using an array of pores that read nucleotide identities based on ionic current steps. We evaluated and optimized MinION performance using M13 genomic dsDNA. Using expectation-maximization (EM) we obtained robust maximum likelihood (ML) estimates for read insertion, deletion and substitution error rates (4.9%, 7.8%, and 5.1% respectively). We found that 99% of high-quality ‘2D’ MinION reads mapped to reference at a mean identity of 85%. We present a MinION-tailored tool for single nucleotide variant (SNV) detection that uses ML parameter estimates and marginalization over many possible read alignments to achieve precision and recall of up to 99%. By pairing our high-confidence alignment strategy with long MinION reads, we resolved the copy number for a cancer/testis gene family (CT47) within an unresolved region of human chromosome Xq24.