Cargando…

Usefulness of voxel-based lesion mapping for predicting motor recovery in subjects with basal ganglia hemorrhage: A preliminary study with 2 case reports

It is important to estimate motor recovery in the early phase after stroke. Many studies have demonstrated that both diffusion tensor tractography (DTT) and motor-evoked potentials (MEP) are valuable predictors of motor recovery, but these modalities do not directly reflect the status of the injured...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Dae Hyun, Kyeong, Sunghyon, Cho, Yoona, Jung, Tae-min, Ahn, Sung Jun, Park, Yoon Ghil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907668/
https://www.ncbi.nlm.nih.gov/pubmed/27281090
http://dx.doi.org/10.1097/MD.0000000000003838
Descripción
Sumario:It is important to estimate motor recovery in the early phase after stroke. Many studies have demonstrated that both diffusion tensor tractography (DTT) and motor-evoked potentials (MEP) are valuable predictors of motor recovery, but these modalities do not directly reflect the status of the injured gray matter. We report on 2 subjects with basal ganglia hemorrhage who showed similar DTT and MEP findings, but had markedly different clinical outcomes. Specifically, Subject 1 showed no improvement in motor function, whereas Subject 2 exhibited substantial improvement 7 weeks after onset. To determine if differences in gray matter might lend insight into these different outcomes, we analyzed gray matter lesions of the 2 subjects using a novel voxel-based lesion mapping method. The lesion of Subject 1 mainly included the putamen, thalamus, and Heschl's gyri, indicating extension of the hemorrhage in the posterior direction. In contrast, the lesion of Subject 2 mainly included the putamen, insula, and pallidum, indicating that the hemorrhage extended anterior laterally. These differential findings suggest that voxel-based gray matter lesion mapping may help to predict differential motor recovery in subjects with basal ganglia hemorrhage with similar DTT and MEP findings.