Cargando…

Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing

Polymeric ultrathin membranes that are compatible with cells offer tremendous advantages for tissue engineering. In this article, we report a free-standing nanomembrane that was developed using a layer-by-layer self-assembly technique with a safe and sacrificial substrate method. After ionization, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Yi, Xu, Rui, Darabi, Mohammad Ali, Zhong, Wen, Luo, Gaoxing, Xing, Malcolm MQ, Wu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907708/
https://www.ncbi.nlm.nih.gov/pubmed/27354789
http://dx.doi.org/10.2147/IJN.S102861
Descripción
Sumario:Polymeric ultrathin membranes that are compatible with cells offer tremendous advantages for tissue engineering. In this article, we report a free-standing nanomembrane that was developed using a layer-by-layer self-assembly technique with a safe and sacrificial substrate method. After ionization, two oppositely charged polyelectrolytes, alginate and chitosan, were alternately deposited on a substrate of a solidified gelatin block to form an ultrathin nanomembrane. The space between the two adjacent layers was ∼200 nm. The thickness of the nanomembrane was proportional to the number of layers. The temperature-sensitive gelatin gel served as a sacrificial template at 37°C. The free-standing nanomembrane promoted bone marrow stem cell adhesion and proliferation. Fluorescence-activated cell sorting was used to analyze green-fluorescent-protein-positive mesenchymal stem cells from the wounds, which showed a significantly high survival and proliferation from the nanomembrane when cells were transplanted to mouse dorsal skin that had a full-thickness burn. The bone-marrow-stem-cell-loaded nanomembrane also accelerated wound contraction and epidermalization. Therefore, this methodology provides a fast and facile approach to construct free-standing ultrathin scaffolds for tissue engineering. The biocompatibility and free-standing nature of the fabricated nanomembrane may be particularly useful for stem cell delivery and wound healing.