Cargando…
VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908129/ https://www.ncbi.nlm.nih.gov/pubmed/27378902 http://dx.doi.org/10.3389/fninf.2016.00020 |
_version_ | 1782437626797621248 |
---|---|
author | Mathotaarachchi, Sulantha Wang, Seqian Shin, Monica Pascoal, Tharick A. Benedet, Andrea L. Kang, Min Su Beaudry, Thomas Fonov, Vladimir S. Gauthier, Serge Labbe, Aurélie Rosa-Neto, Pedro |
author_facet | Mathotaarachchi, Sulantha Wang, Seqian Shin, Monica Pascoal, Tharick A. Benedet, Andrea L. Kang, Min Su Beaudry, Thomas Fonov, Vladimir S. Gauthier, Serge Labbe, Aurélie Rosa-Neto, Pedro |
author_sort | Mathotaarachchi, Sulantha |
collection | PubMed |
description | In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level. |
format | Online Article Text |
id | pubmed-4908129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49081292016-07-04 VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis Mathotaarachchi, Sulantha Wang, Seqian Shin, Monica Pascoal, Tharick A. Benedet, Andrea L. Kang, Min Su Beaudry, Thomas Fonov, Vladimir S. Gauthier, Serge Labbe, Aurélie Rosa-Neto, Pedro Front Neuroinform Neuroscience In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level. Frontiers Media S.A. 2016-06-15 /pmc/articles/PMC4908129/ /pubmed/27378902 http://dx.doi.org/10.3389/fninf.2016.00020 Text en Copyright © 2016 Mathotaarachchi, Wang, Shin, Pascoal, Benedet, Kang, Beaudry, Fonov, Gauthier, Labbe, Rosa-Neto for the Alzheimer's Disease Neuroimaging Initiative. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Mathotaarachchi, Sulantha Wang, Seqian Shin, Monica Pascoal, Tharick A. Benedet, Andrea L. Kang, Min Su Beaudry, Thomas Fonov, Vladimir S. Gauthier, Serge Labbe, Aurélie Rosa-Neto, Pedro VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title | VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title_full | VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title_fullStr | VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title_full_unstemmed | VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title_short | VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis |
title_sort | voxelstats: a matlab package for multi-modal voxel-wise brain image analysis |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908129/ https://www.ncbi.nlm.nih.gov/pubmed/27378902 http://dx.doi.org/10.3389/fninf.2016.00020 |
work_keys_str_mv | AT mathotaarachchisulantha voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT wangseqian voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT shinmonica voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT pascoaltharicka voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT benedetandreal voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT kangminsu voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT beaudrythomas voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT fonovvladimirs voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT gauthierserge voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT labbeaurelie voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis AT rosanetopedro voxelstatsamatlabpackageformultimodalvoxelwisebrainimageanalysis |