Cargando…
Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion
Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset t...
Autores principales: | Chandler, Benjamin, Mingolla, Ennio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908250/ https://www.ncbi.nlm.nih.gov/pubmed/27340396 http://dx.doi.org/10.1155/2016/6425257 |
Ejemplares similares
-
Semantic Relatedness Emerges in Deep Convolutional Neural Networks Designed for Object Recognition
por: Huang, Taicheng, et al.
Publicado: (2021) -
Mechanisms of human dynamic object recognition revealed by sequential deep neural networks
por: Sörensen, Lynn K. A., et al.
Publicado: (2023) -
Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
por: Cadieu, Charles F., et al.
Publicado: (2014) -
Meta-neural-network for real-time and passive deep-learning-based object recognition
por: Weng, Jingkai, et al.
Publicado: (2020) -
Spontaneous representation of numerosity zero in a deep neural network for visual object recognition
por: Nasr, Khaled, et al.
Publicado: (2021)