Cargando…
Jumping across biomedical contexts using compressive data fusion
Motivation: The rapid growth of diverse biological data allows us to consider interactions between a variety of objects, such as genes, chemicals, molecular signatures, diseases, pathways and environmental exposures. Often, any pair of objects—such as a gene and a disease—can be related in different...
Autores principales: | Zitnik, Marinka, Zupan, Blaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908331/ https://www.ncbi.nlm.nih.gov/pubmed/27307649 http://dx.doi.org/10.1093/bioinformatics/btw247 |
Ejemplares similares
-
An integer programming framework for inferring disease complexes from network data
por: Mazza, Arnon, et al.
Publicado: (2016) -
Linear effects models of signaling pathways from combinatorial perturbation data
por: Szczurek, Ewa, et al.
Publicado: (2016) -
Data-driven mechanistic analysis method to reveal dynamically evolving regulatory networks
por: Intosalmi, Jukka, et al.
Publicado: (2016) -
Compacting de Bruijn graphs from sequencing data quickly and in low memory
por: Chikhi, Rayan, et al.
Publicado: (2016) -
RCK: accurate and efficient inference of sequence- and structure-based protein–RNA binding models from RNAcompete data
por: Orenstein, Yaron, et al.
Publicado: (2016)