Cargando…
Analysis of aggregated cell–cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells
Motivation: As ‘omics’ biotechnologies accelerate the capability to contrast a myriad of molecular measurements from a single cell, they also exacerbate current analytical limitations for detecting meaningful single-cell dysregulations. Moreover, mRNA expression alone lacks functional interpretation...
Autores principales: | Schissler, A. Grant, Li, Qike, Chen, James L., Kenost, Colleen, Achour, Ikbel, Billheimer, D. Dean, Li, Haiquan, Piegorsch, Walter W., Lussier, Yves A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908332/ https://www.ncbi.nlm.nih.gov/pubmed/27307648 http://dx.doi.org/10.1093/bioinformatics/btw248 |
Ejemplares similares
-
What time is it? Deep learning approaches for circadian rhythms
por: Agostinelli, Forest, et al.
Publicado: (2016) -
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016) -
A convex optimization approach for identification of human tissue-specific interactomes
por: Mohammadi, Shahin, et al.
Publicado: (2016) -
Fast metabolite identification with Input Output Kernel Regression
por: Brouard, Céline, et al.
Publicado: (2016) -
Jumping across biomedical contexts using compressive data fusion
por: Zitnik, Marinka, et al.
Publicado: (2016)