Cargando…
PHOCOS: inferring multi-feature phenotypic crosstalk networks
Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a bio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908335/ https://www.ncbi.nlm.nih.gov/pubmed/27307643 http://dx.doi.org/10.1093/bioinformatics/btw251 |
Sumario: | Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a biomarker. These approaches are insufficient for analyzing perturbation data that can contain information about multiple features (e.g. abundance, activity or localization) of each biomarker. Results: We propose a computational framework for inferring phenotypic crosstalk (PHOCOS) that is suitable for high-content microscopy or other modalities that capture multiple phenotypes per biomarker. PHOCOS uses a robust graph-learning paradigm to predict direct effects from potential indirect effects and identify errors owing to noise or missing links. The result is a multi-feature, sparse network that parsimoniously captures direct and strong interactions across phenotypic attributes of multiple biomarkers. We use simulated and biological data to demonstrate the ability of PHOCOS to recover multi-attribute crosstalk networks from cellular perturbation assays. Availability and implementation: PHOCOS is available in open source at https://github.com/AltschulerWu-Lab/PHOCOS Contact: steven.altschuler@ucsf.edu or lani.wu@ucsf.edu |
---|