Cargando…

PHOCOS: inferring multi-feature phenotypic crosstalk networks

Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Yue, Altschuler, Steven J., Wu, Lani F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908335/
https://www.ncbi.nlm.nih.gov/pubmed/27307643
http://dx.doi.org/10.1093/bioinformatics/btw251
Descripción
Sumario:Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a biomarker. These approaches are insufficient for analyzing perturbation data that can contain information about multiple features (e.g. abundance, activity or localization) of each biomarker. Results: We propose a computational framework for inferring phenotypic crosstalk (PHOCOS) that is suitable for high-content microscopy or other modalities that capture multiple phenotypes per biomarker. PHOCOS uses a robust graph-learning paradigm to predict direct effects from potential indirect effects and identify errors owing to noise or missing links. The result is a multi-feature, sparse network that parsimoniously captures direct and strong interactions across phenotypic attributes of multiple biomarkers. We use simulated and biological data to demonstrate the ability of PHOCOS to recover multi-attribute crosstalk networks from cellular perturbation assays. Availability and implementation: PHOCOS is available in open source at https://github.com/AltschulerWu-Lab/PHOCOS Contact: steven.altschuler@ucsf.edu or lani.wu@ucsf.edu