Cargando…
PHOCOS: inferring multi-feature phenotypic crosstalk networks
Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a bio...
Autores principales: | Deng, Yue, Altschuler, Steven J., Wu, Lani F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908335/ https://www.ncbi.nlm.nih.gov/pubmed/27307643 http://dx.doi.org/10.1093/bioinformatics/btw251 |
Ejemplares similares
-
An integer programming framework for inferring disease complexes from network data
por: Mazza, Arnon, et al.
Publicado: (2016) -
An algorithm for computing the gene tree probability under the multispecies coalescent and its application in the inference of population tree
por: Wu, Yufeng
Publicado: (2016) -
RCK: accurate and efficient inference of sequence- and structure-based protein–RNA binding models from RNAcompete data
por: Orenstein, Yaron, et al.
Publicado: (2016) -
What time is it? Deep learning approaches for circadian rhythms
por: Agostinelli, Forest, et al.
Publicado: (2016) -
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016)