Cargando…
Classifying and segmenting microscopy images with deep multiple instance learning
Motivation: High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning...
Autores principales: | Kraus, Oren Z., Ba, Jimmy Lei, Frey, Brendan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908336/ https://www.ncbi.nlm.nih.gov/pubmed/27307644 http://dx.doi.org/10.1093/bioinformatics/btw252 |
Ejemplares similares
-
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
por: Peng, Shengwen, et al.
Publicado: (2016) -
What time is it? Deep learning approaches for circadian rhythms
por: Agostinelli, Forest, et al.
Publicado: (2016) -
SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing
por: Tsuchiya, Mariko, et al.
Publicado: (2016) -
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016) -
A convex optimization approach for identification of human tissue-specific interactomes
por: Mohammadi, Shahin, et al.
Publicado: (2016)