Cargando…
Convolutional neural network architectures for predicting DNA–protein binding
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to...
Autores principales: | Zeng, Haoyang, Edwards, Matthew D., Liu, Ge, Gifford, David K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908339/ https://www.ncbi.nlm.nih.gov/pubmed/27307608 http://dx.doi.org/10.1093/bioinformatics/btw255 |
Ejemplares similares
-
Structure-based prediction of transcription factor binding specificity using an integrative energy function
por: Farrel, Alvin, et al.
Publicado: (2016) -
RCK: accurate and efficient inference of sequence- and structure-based protein–RNA binding models from RNAcompete data
por: Orenstein, Yaron, et al.
Publicado: (2016) -
A novel method for discovering local spatial clusters of genomic regions with functional relationships from DNA contact maps
por: Hu, Xihao, et al.
Publicado: (2016) -
PHOCOS: inferring multi-feature phenotypic crosstalk networks
por: Deng, Yue, et al.
Publicado: (2016) -
A network-driven approach for genome-wide association mapping
por: Lee, Seunghak, et al.
Publicado: (2016)