Cargando…
A novel algorithm for calling mRNA m(6)A peaks by modeling biological variances in MeRIP-seq data
Motivation: N(6)-methyl-adenosine (m(6)A) is the most prevalent mRNA methylation but precise prediction of its mRNA location is important for understanding its function. A recent sequencing technology, known as Methylated RNA Immunoprecipitation Sequencing technology (MeRIP-seq), has been developed...
Autores principales: | Cui, Xiaodong, Meng, Jia, Zhang, Shaowu, Chen, Yidong, Huang, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908365/ https://www.ncbi.nlm.nih.gov/pubmed/27307641 http://dx.doi.org/10.1093/bioinformatics/btw281 |
Ejemplares similares
-
DeepMeSH: deep semantic representation for improving large-scale MeSH indexing
por: Peng, Shengwen, et al.
Publicado: (2016) -
RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to transcriptomes
por: Srivastava, Avi, et al.
Publicado: (2016) -
What time is it? Deep learning approaches for circadian rhythms
por: Agostinelli, Forest, et al.
Publicado: (2016) -
DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
por: Yuan, Qingjun, et al.
Publicado: (2016) -
A convex optimization approach for identification of human tissue-specific interactomes
por: Mohammadi, Shahin, et al.
Publicado: (2016)