Cargando…

Unexpected but welcome. Artificially selected traits may increase fitness in wild boar

Artificial selection affects phenotypes differently by natural selection. Domestic traits, which pass into the wild, are usually negatively selected. Yet, exceptionally, this axiom may fail to apply if genes, from the domestic animals, increase fertility in the wild. We studied a rare case of a wild...

Descripción completa

Detalles Bibliográficos
Autores principales: Fulgione, Domenico, Rippa, Daniela, Buglione, Maria, Trapanese, Martina, Petrelli, Simona, Maselli, Valeria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908463/
https://www.ncbi.nlm.nih.gov/pubmed/27330553
http://dx.doi.org/10.1111/eva.12383
Descripción
Sumario:Artificial selection affects phenotypes differently by natural selection. Domestic traits, which pass into the wild, are usually negatively selected. Yet, exceptionally, this axiom may fail to apply if genes, from the domestic animals, increase fertility in the wild. We studied a rare case of a wild boar population under the framework of Wright's interdemic selection model, which could explain gene flow between wild boar and pig, both considered as demes. We analysed the MC1R gene and microsatellite neutral loci in 62 pregnant wild boars as markers of hybridization, and we correlated nucleotide mutations on MC1R (which are common in domestic breeds) to litter size, as an evaluation of fitness in wild sow. Regardless of body size and phyletic effects, wild boar sows bearing nonsynonymous MC1R mutations produced larger litters. This directly suggests that artificially selected traits reaching wild populations, through interdemic gene flow, could bypass natural selection if and only if they increase the fitness in the wild.