Cargando…

Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training

Load carriage (LC) exercise may exacerbate inflammation during training. Nutritional supplementation may mitigate this response by sparing endogenous carbohydrate stores, enhancing glycogen repletion, and attenuating negative energy balance. Two studies were conducted to assess inflammatory response...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasiakos, Stefan M., Margolis, Lee M., Murphy, Nancy E., McClung, Holy L., Martini, Svein, Gundersen, Yngvar, Castellani, John W., Karl, James P., Teien, Hilde K., Madslien, Elisabeth H., Stenberg, Pal H., Young, Andrew J., Montain, Scott J., McClung, James P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908496/
https://www.ncbi.nlm.nih.gov/pubmed/27273884
http://dx.doi.org/10.14814/phy2.12820
Descripción
Sumario:Load carriage (LC) exercise may exacerbate inflammation during training. Nutritional supplementation may mitigate this response by sparing endogenous carbohydrate stores, enhancing glycogen repletion, and attenuating negative energy balance. Two studies were conducted to assess inflammatory responses to acute LC and training, with or without nutritional supplementation. Study 1: 40 adults fed eucaloric diets performed 90‐min of either LC (treadmill, mean ± SD 24 ± 3 kg LC) or cycle ergometry (CE) matched for intensity (2.2 ± 0.1 VO(2peak) L min(−1)) during which combined 10 g protein/46 g carbohydrate (223 kcal) or non‐nutritive (22 kcal) control drinks were consumed. Study 2: 73 Soldiers received either combat rations alone or supplemented with 1000 kcal day(−1) from 20 g protein‐ or 48 g carbohydrate‐based bars during a 4‐day, 51 km ski march (~45 kg LC, energy expenditure 6155 ± 515 kcal day(−1) and intake 2866 ± 616 kcal day(−1)). IL‐6, hepcidin, and ferritin were measured at baseline, 3‐h post exercise (PE), 24‐h PE, 48‐h PE, and 72‐h PE in study 1, and before (PRE) and after (POST) the 4‐d ski march in study 2. Study 1: IL‐6 was higher 3‐h and 24‐h post exercise (PE) for CE only (mode × time, P < 0.05), hepcidin increased 3‐h PE and recovered by 48‐h, and ferritin peaked 24‐h and remained elevated 72‐h PE (P < 0.05), regardless of mode and diet. Study 2: IL‐6, hepcidin and ferritin were higher (P < 0.05) after training, regardless of group assignment. Energy expenditure (r = 0.40), intake (r = −0.26), and balance (r = −0.43) were associated (P < 0.05) with hepcidin after training. Inflammation after acute LC and CE was similar and not affected by supplemental nutrition during energy balance. The magnitude of hepcidin response was inversely related to energy balance suggesting that eating enough to balance energy expenditure might attenuate the inflammatory response to military training.