Cargando…

Urea transporters and sweat response to uremia

In humans, urea is excreted in sweat, largely through the eccrine sweat gland. The urea concentration in human sweat is elevated when compared to blood urea nitrogen. The sweat urea nitrogen (UN) of patients with end‐stage kidney disease (ESRD) is increased when compared with healthy humans. The abi...

Descripción completa

Detalles Bibliográficos
Autores principales: Keller, Raymond W., Bailey, James L., Wang, Yanhua, Klein, Janet D., Sands, Jeff M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908500/
https://www.ncbi.nlm.nih.gov/pubmed/27273880
http://dx.doi.org/10.14814/phy2.12825
Descripción
Sumario:In humans, urea is excreted in sweat, largely through the eccrine sweat gland. The urea concentration in human sweat is elevated when compared to blood urea nitrogen. The sweat urea nitrogen (UN) of patients with end‐stage kidney disease (ESRD) is increased when compared with healthy humans. The ability to produce sweat is maintained in the overwhelming majority of ESRD patients. A comprehensive literature review found no reports of sweat UN neither in healthy rodents nor in rodent models of chronic kidney disease (CKD). Therefore, this study measured sweat UN concentrations in healthy and uremic rats. Uninephrectomy followed by renal artery ligation was used to remove 5/6 of renal function. Rats were then fed a high‐protein diet to induce uremia. Pilocarpine was used to induce sweating. Sweat droplets were collected under oil. Sweat UN was measured with a urease assay. Serum UN was measured using a fluorescent ortho‐pthalaldehyde reaction. Immunohistochemistry (IHC) was accomplished with a horseradish peroxidase and diaminobenzidine technique. Sweat UN in uremic rats was elevated greater than two times compared to healthy pair‐fed controls (220 ± 17 and 91 ± 15 mmol/L, respectively). Post hoc analysis showed a significant difference between male and female uremic sweat UN (279 ± 38 and 177 ± 11 mmol/L, respectively.) IHC shows, for the first time, the presence of the urea transporters UT‐B and UT‐A2 in both healthy and uremic rat cutaneous structures. Future studies will use this model to elucidate how rat sweat UN and other solute excretion is altered by commonly prescribed diuretics.