Cargando…
Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy
Understanding the mechanism of charge generation, distribution, and transfer between surfaces is very important for energy harvesting applications based on triboelectric effect. Here, we demonstrate dynamic nanotriboelectrification with torsional resonance (TR) mode atomic force microscopy (AFM). Ex...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908601/ https://www.ncbi.nlm.nih.gov/pubmed/27302624 http://dx.doi.org/10.1038/srep27874 |
Sumario: | Understanding the mechanism of charge generation, distribution, and transfer between surfaces is very important for energy harvesting applications based on triboelectric effect. Here, we demonstrate dynamic nanotriboelectrification with torsional resonance (TR) mode atomic force microscopy (AFM). Experiments on rubbing the sample surface using TR mode for the generation of triboelectric charges and in-situ characterization of the charge distribution using scanning Kelvin probe microcopy (SKPM) were performed. This method allows the tip to perform lateral oscillation and maintains the tip-sample interaction in the attractive region to ensure high efficiency of the charge generation during the rubbing process. The measured efficiency of generating triboelectric charges can achieve ~10.53 times higher than conventional static/contact mode in the triboelectrification experiments. In addition to the charge generation, local discharging experiments were also performed. This work would provide a new method to generate patterned charges and also be helpful in understanding the mechanism of nanotriboelectrification. |
---|