Cargando…

A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO(2) levels (from greenhouse conditions of high pCO(2) in the Eocene to low pCO(2...

Descripción completa

Detalles Bibliográficos
Autores principales: Stolarski, Jarosław, Bosellini, Francesca R., Wallace, Carden C., Gothmann, Anne M., Mazur, Maciej, Domart-Coulon, Isabelle, Gutner-Hoch, Eldad, Neuser, Rolf D., Levy, Oren, Shemesh, Aldo, Meibom, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908604/
https://www.ncbi.nlm.nih.gov/pubmed/27302371
http://dx.doi.org/10.1038/srep27579
_version_ 1782437714850742272
author Stolarski, Jarosław
Bosellini, Francesca R.
Wallace, Carden C.
Gothmann, Anne M.
Mazur, Maciej
Domart-Coulon, Isabelle
Gutner-Hoch, Eldad
Neuser, Rolf D.
Levy, Oren
Shemesh, Aldo
Meibom, Anders
author_facet Stolarski, Jarosław
Bosellini, Francesca R.
Wallace, Carden C.
Gothmann, Anne M.
Mazur, Maciej
Domart-Coulon, Isabelle
Gutner-Hoch, Eldad
Neuser, Rolf D.
Levy, Oren
Shemesh, Aldo
Meibom, Anders
author_sort Stolarski, Jarosław
collection PubMed
description Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO(2) levels (from greenhouse conditions of high pCO(2) in the Eocene to low pCO(2) ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.
format Online
Article
Text
id pubmed-4908604
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49086042016-06-16 A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change Stolarski, Jarosław Bosellini, Francesca R. Wallace, Carden C. Gothmann, Anne M. Mazur, Maciej Domart-Coulon, Isabelle Gutner-Hoch, Eldad Neuser, Rolf D. Levy, Oren Shemesh, Aldo Meibom, Anders Sci Rep Article Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO(2) levels (from greenhouse conditions of high pCO(2) in the Eocene to low pCO(2) ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. Nature Publishing Group 2016-06-15 /pmc/articles/PMC4908604/ /pubmed/27302371 http://dx.doi.org/10.1038/srep27579 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Stolarski, Jarosław
Bosellini, Francesca R.
Wallace, Carden C.
Gothmann, Anne M.
Mazur, Maciej
Domart-Coulon, Isabelle
Gutner-Hoch, Eldad
Neuser, Rolf D.
Levy, Oren
Shemesh, Aldo
Meibom, Anders
A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title_full A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title_fullStr A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title_full_unstemmed A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title_short A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
title_sort unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908604/
https://www.ncbi.nlm.nih.gov/pubmed/27302371
http://dx.doi.org/10.1038/srep27579
work_keys_str_mv AT stolarskijarosław auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT bosellinifrancescar auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT wallacecardenc auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT gothmannannem auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT mazurmaciej auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT domartcoulonisabelle auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT gutnerhocheldad auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT neuserrolfd auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT levyoren auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT shemeshaldo auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT meibomanders auniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT stolarskijarosław uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT bosellinifrancescar uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT wallacecardenc uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT gothmannannem uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT mazurmaciej uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT domartcoulonisabelle uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT gutnerhocheldad uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT neuserrolfd uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT levyoren uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT shemeshaldo uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange
AT meibomanders uniquecoralbiomineralizationpatternhasresisted40millionyearsofmajoroceanchemistrychange