Cargando…
Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text
Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new syste...
Autores principales: | Bravo, Àlex, Li, Tong Shu, Su, Andrew I., Good, Benjamin M., Furlong, Laura I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908671/ https://www.ncbi.nlm.nih.gov/pubmed/27307137 http://dx.doi.org/10.1093/database/baw094 |
Ejemplares similares
-
A crowdsourcing workflow for extracting chemical-induced disease relations from free text
por: Li, Tong Shu, et al.
Publicado: (2016) -
The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation
por: Singh, Meghna, et al.
Publicado: (2014) -
DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes
por: Piñero, Janet, et al.
Publicado: (2015) -
ResMarkerDB: a database of biomarkers of response to antibody therapy in breast and colorectal cancer
por: Pérez-Granado, Judith, et al.
Publicado: (2019) -
Classifying domain-specific text documents containing ambiguous
keywords
por: Karimi, Kamran, et al.
Publicado: (2021)