Cargando…
Heat Capacity and Thermodynamic Properties of Poly(chlorotrifluoroethylene) from 2.5 to 620 K
Heat capacities and thermodynamic properties of a number of poly(chlorotrifluoToethylene) samples subjected to various thermal treatments, to achieve crystallinities ranging from approximately 10 to 90%, have been studied from 2.5 to 370 K by automated adiabatic calorimetiy and from 250 to 620 K by...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1992
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909169/ https://www.ncbi.nlm.nih.gov/pubmed/28053437 http://dx.doi.org/10.6028/jres.097.014 |
Sumario: | Heat capacities and thermodynamic properties of a number of poly(chlorotrifluoToethylene) samples subjected to various thermal treatments, to achieve crystallinities ranging from approximately 10 to 90%, have been studied from 2.5 to 370 K by automated adiabatic calorimetiy and from 250 to 620 K by differential scanning calorimetry. Small heat capacity discontinuities in the temperature range from 320 to 350 K were observed in all samples with crystallinities greater than 40%. Spontaneous adiabatic temperature drifts associated with these anomalies were prasitive (exothermic) for quenched samples and negative (endothermic) for annealed samples. Therefore these anomalies were believed to be associated with a relaxation phenomenon similar to that of a glass transition. For highly quenched low crystallinity films, a much larger heat capacity discontinuity of greater than 15% was observed, amidst a crystallization exotherm. In addition to the above phenomena, annealing of the sample at any temperature between 240 to 400 K would produce a shift in the population distribution of crystallites from reorganization or melting and recrystallization. As a result, the apparent heat capacity became somewhat lowered at the annealing temperature and somewhat raised at about 20 K above the annealing temperature. |
---|