Cargando…

Hopf Bifurcation of an Epidemic Model with Delay

A spatiotemporal epidemic model with nonlinear incidence rate and Neumann boundary conditions is investigated. On the basis of the analysis of eigenvalues of the eigenpolynomial, we derive the conditions of the existence of Hopf bifurcation in one dimension space. By utilizing the normal form theory...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Li-Peng, Ding, Xiao-Qiang, Feng, Li-Ping, Shi, Qiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909215/
https://www.ncbi.nlm.nih.gov/pubmed/27304674
http://dx.doi.org/10.1371/journal.pone.0157367
Descripción
Sumario:A spatiotemporal epidemic model with nonlinear incidence rate and Neumann boundary conditions is investigated. On the basis of the analysis of eigenvalues of the eigenpolynomial, we derive the conditions of the existence of Hopf bifurcation in one dimension space. By utilizing the normal form theory and the center manifold theorem of partial functional differential equations (PFDs), the properties of bifurcating periodic solutions are analyzed. Moreover, according to numerical simulations, it is found that the periodic solutions can emerge in delayed epidemic model with spatial diffusion, which is consistent with our theoretical results. The obtained results may provide a new viewpoint for the recurrent outbreak of disease.