Cargando…
Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decrea...
Autores principales: | Cao, Jianfang, Cui, Hongyan, Shi, Hao, Jiao, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909218/ https://www.ncbi.nlm.nih.gov/pubmed/27304987 http://dx.doi.org/10.1371/journal.pone.0157551 |
Ejemplares similares
-
Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model
por: Liu, Yang, et al.
Publicado: (2016) -
Application of back propagation neural network model optimized by particle swarm algorithm in predicting the risk of hypertension
por: Yan, Yan, et al.
Publicado: (2022) -
Learning big data with Amazon Elastic MapReduce
por: Singh, Amarkant, et al.
Publicado: (2014) -
MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning
por: Liu, Yang, et al.
Publicado: (2015) -
Big data with Hadoop MapReduce: a classroom approach
por: Jeyaraj, Rathinaraja, et al.
Publicado: (2020)