Cargando…
Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana
To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909763/ https://www.ncbi.nlm.nih.gov/pubmed/27379103 http://dx.doi.org/10.3389/fpls.2016.00743 |
_version_ | 1782437877513191424 |
---|---|
author | Alkanaimsh, Salem Karuppanan, Kalimuthu Guerrero, Andrés Tu, Aye M. Hashimoto, Bryce Hwang, Min Sook Phu, My L. Arzola, Lucas Lebrilla, Carlito B. Dandekar, Abhaya M. Falk, Bryce W. Nandi, Somen Rodriguez, Raymond L. McDonald, Karen A. |
author_facet | Alkanaimsh, Salem Karuppanan, Kalimuthu Guerrero, Andrés Tu, Aye M. Hashimoto, Bryce Hwang, Min Sook Phu, My L. Arzola, Lucas Lebrilla, Carlito B. Dandekar, Abhaya M. Falk, Bryce W. Nandi, Somen Rodriguez, Raymond L. McDonald, Karen A. |
author_sort | Alkanaimsh, Salem |
collection | PubMed |
description | To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. |
format | Online Article Text |
id | pubmed-4909763 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49097632016-07-04 Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana Alkanaimsh, Salem Karuppanan, Kalimuthu Guerrero, Andrés Tu, Aye M. Hashimoto, Bryce Hwang, Min Sook Phu, My L. Arzola, Lucas Lebrilla, Carlito B. Dandekar, Abhaya M. Falk, Bryce W. Nandi, Somen Rodriguez, Raymond L. McDonald, Karen A. Front Plant Sci Plant Science To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. Frontiers Media S.A. 2016-06-16 /pmc/articles/PMC4909763/ /pubmed/27379103 http://dx.doi.org/10.3389/fpls.2016.00743 Text en Copyright © 2016 Alkanaimsh, Karuppanan, Guerrero, Tu, Hashimoto, Hwang, Phu, Arzola, Lebrilla, Dandekar, Falk, Nandi, Rodriguez and McDonald. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Alkanaimsh, Salem Karuppanan, Kalimuthu Guerrero, Andrés Tu, Aye M. Hashimoto, Bryce Hwang, Min Sook Phu, My L. Arzola, Lucas Lebrilla, Carlito B. Dandekar, Abhaya M. Falk, Bryce W. Nandi, Somen Rodriguez, Raymond L. McDonald, Karen A. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title | Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title_full | Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title_fullStr | Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title_full_unstemmed | Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title_short | Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana |
title_sort | transient expression of tetrameric recombinant human butyrylcholinesterase in nicotiana benthamiana |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909763/ https://www.ncbi.nlm.nih.gov/pubmed/27379103 http://dx.doi.org/10.3389/fpls.2016.00743 |
work_keys_str_mv | AT alkanaimshsalem transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT karuppanankalimuthu transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT guerreroandres transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT tuayem transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT hashimotobryce transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT hwangminsook transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT phumyl transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT arzolalucas transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT lebrillacarlitob transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT dandekarabhayam transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT falkbrycew transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT nandisomen transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT rodriguezraymondl transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana AT mcdonaldkarena transientexpressionoftetramericrecombinanthumanbutyrylcholinesteraseinnicotianabenthamiana |