Cargando…
PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG
Independent component analysis (ICA) is a class of algorithms widely applied to separate sources in EEG data. Most ICA approaches use optimization criteria derived from temporal statistical independence and are invariant with respect to the actual ordering of individual observations. We propose a me...
Autores principales: | Ball, Kenneth, Bigdely-Shamlo, Nima, Mullen, Tim, Robbins, Kay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909972/ https://www.ncbi.nlm.nih.gov/pubmed/27340397 http://dx.doi.org/10.1155/2016/9754813 |
Ejemplares similares
-
The PREP pipeline: standardized preprocessing for large-scale EEG analysis
por: Bigdely-Shamlo, Nima, et al.
Publicado: (2015) -
Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach
por: Bigdely-Shamlo, Nima, et al.
Publicado: (2016) -
BLINKER: Automated Extraction of Ocular Indices from EEG Enabling Large-Scale Analysis
por: Kleifges, Kelly, et al.
Publicado: (2017) -
Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent Time-Frequency Features
por: Meng, Jia, et al.
Publicado: (2012) -
EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing
por: Delorme, Arnaud, et al.
Publicado: (2011)