Cargando…
Laboratory analogue of a supersonic accretion column in a binary star system
Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magn...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910020/ https://www.ncbi.nlm.nih.gov/pubmed/27291065 http://dx.doi.org/10.1038/ncomms11899 |
_version_ | 1782437932440748032 |
---|---|
author | Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J. -M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. Falize, É. |
author_facet | Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J. -M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. Falize, É. |
author_sort | Cross, J. E. |
collection | PubMed |
description | Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100–1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions. |
format | Online Article Text |
id | pubmed-4910020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49100202016-06-24 Laboratory analogue of a supersonic accretion column in a binary star system Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J. -M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. Falize, É. Nat Commun Article Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100–1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions. Nature Publishing Group 2016-06-13 /pmc/articles/PMC4910020/ /pubmed/27291065 http://dx.doi.org/10.1038/ncomms11899 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Cross, J. E. Gregori, G. Foster, J. M. Graham, P. Bonnet-Bidaud, J. -M. Busschaert, C. Charpentier, N. Danson, C. N. Doyle, H. W. Drake, R. P. Fyrth, J. Gumbrell, E. T. Koenig, M. Krauland, C. Kuranz, C. C. Loupias, B. Michaut, C. Mouchet, M. Patankar, S. Skidmore, J. Spindloe, C. Tubman, E. R. Woolsey, N. Yurchak, R. Falize, É. Laboratory analogue of a supersonic accretion column in a binary star system |
title | Laboratory analogue of a supersonic accretion column in a binary star system |
title_full | Laboratory analogue of a supersonic accretion column in a binary star system |
title_fullStr | Laboratory analogue of a supersonic accretion column in a binary star system |
title_full_unstemmed | Laboratory analogue of a supersonic accretion column in a binary star system |
title_short | Laboratory analogue of a supersonic accretion column in a binary star system |
title_sort | laboratory analogue of a supersonic accretion column in a binary star system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910020/ https://www.ncbi.nlm.nih.gov/pubmed/27291065 http://dx.doi.org/10.1038/ncomms11899 |
work_keys_str_mv | AT crossje laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT gregorig laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT fosterjm laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT grahamp laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT bonnetbidaudjm laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT busschaertc laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT charpentiern laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT dansoncn laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT doylehw laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT drakerp laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT fyrthj laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT gumbrellet laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT koenigm laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT kraulandc laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT kuranzcc laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT loupiasb laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT michautc laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT mouchetm laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT patankars laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT skidmorej laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT spindloec laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT tubmaner laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT woolseyn laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT yurchakr laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem AT falizee laboratoryanalogueofasupersonicaccretioncolumninabinarystarsystem |