Cargando…

Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS(2)...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Qingling, Zeng, Shuwen, Jiang, Li, Hong, Liying, Xu, Gaixia, Dinh, Xuan-Quyen, Qian, Jun, He, Sailing, Qu, Junle, Coquet, Philippe, Yong, Ken-Tye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910054/
https://www.ncbi.nlm.nih.gov/pubmed/27305974
http://dx.doi.org/10.1038/srep28190
_version_ 1782437940278853632
author Ouyang, Qingling
Zeng, Shuwen
Jiang, Li
Hong, Liying
Xu, Gaixia
Dinh, Xuan-Quyen
Qian, Jun
He, Sailing
Qu, Junle
Coquet, Philippe
Yong, Ken-Tye
author_facet Ouyang, Qingling
Zeng, Shuwen
Jiang, Li
Hong, Liying
Xu, Gaixia
Dinh, Xuan-Quyen
Qian, Jun
He, Sailing
Qu, Junle
Coquet, Philippe
Yong, Ken-Tye
author_sort Ouyang, Qingling
collection PubMed
description In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS(2)/MoSe(2)/WS(2)/WSe(2) (defined as MX(2)) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX(2) layers are presented respectively. The results show that silicon nanosheet and MX(2) layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX(2) enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS(2).
format Online
Article
Text
id pubmed-4910054
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49100542016-06-16 Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor Ouyang, Qingling Zeng, Shuwen Jiang, Li Hong, Liying Xu, Gaixia Dinh, Xuan-Quyen Qian, Jun He, Sailing Qu, Junle Coquet, Philippe Yong, Ken-Tye Sci Rep Article In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS(2)/MoSe(2)/WS(2)/WSe(2) (defined as MX(2)) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX(2) layers are presented respectively. The results show that silicon nanosheet and MX(2) layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX(2) enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS(2). Nature Publishing Group 2016-06-16 /pmc/articles/PMC4910054/ /pubmed/27305974 http://dx.doi.org/10.1038/srep28190 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Ouyang, Qingling
Zeng, Shuwen
Jiang, Li
Hong, Liying
Xu, Gaixia
Dinh, Xuan-Quyen
Qian, Jun
He, Sailing
Qu, Junle
Coquet, Philippe
Yong, Ken-Tye
Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title_full Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title_fullStr Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title_full_unstemmed Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title_short Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor
title_sort sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910054/
https://www.ncbi.nlm.nih.gov/pubmed/27305974
http://dx.doi.org/10.1038/srep28190
work_keys_str_mv AT ouyangqingling sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT zengshuwen sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT jiangli sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT hongliying sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT xugaixia sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT dinhxuanquyen sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT qianjun sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT hesailing sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT qujunle sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT coquetphilippe sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor
AT yongkentye sensitivityenhancementoftransitionmetaldichalcogenidessiliconnanostructurebasedsurfaceplasmonresonancebiosensor