Cargando…

Monitoring tetracycline through a solid-state nanopore sensor

Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuechuan, Chen, Yanling, Fu, Yongqi, Ying, Cuifeng, Feng, Yanxiao, Huang, Qimeng, Wang, Chao, Pei, De-Sheng, Wang, Deqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910080/
https://www.ncbi.nlm.nih.gov/pubmed/27306259
http://dx.doi.org/10.1038/srep27959
Descripción
Sumario:Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0–39.5 ng/mL. The rapid growth zone is 39.5−529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.