Cargando…
Multi-class texture analysis in colorectal cancer histology
Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological...
Autores principales: | Kather, Jakob Nikolas, Weis, Cleo-Aron, Bianconi, Francesco, Melchers, Susanne M., Schad, Lothar R., Gaiser, Timo, Marx, Alexander, Zöllner, Frank Gerrit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910082/ https://www.ncbi.nlm.nih.gov/pubmed/27306927 http://dx.doi.org/10.1038/srep27988 |
Ejemplares similares
-
Identification of a characteristic vascular belt zone in human colorectal cancer
por: Kather, Jakob Nikolas, et al.
Publicado: (2017) -
New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images
por: Kather, Jakob Nikolas, et al.
Publicado: (2015) -
Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images
por: Kather, Jakob Nikolas, et al.
Publicado: (2015) -
Automatic evaluation of tumor budding in immunohistochemically stained colorectal carcinomas and correlation to clinical outcome
por: Weis, Cleo-Aron, et al.
Publicado: (2018) -
Color-coded visualization of magnetic resonance imaging multiparametric maps
por: Kather, Jakob Nikolas, et al.
Publicado: (2017)