Cargando…
Collapse of a lipid-coated nanobubble and subsequent liposome formation
We investigate the collapse of a lipid-coated nanobubble and subsequent formation of a lipid vesicle by coarse grained molecular dynamics simulations. A spherical nanobubble coated with a phospholipid monolayer in water is a model of an aqueous dispersion of phospholipids under negative pressure dur...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910104/ https://www.ncbi.nlm.nih.gov/pubmed/27306704 http://dx.doi.org/10.1038/srep28164 |
Sumario: | We investigate the collapse of a lipid-coated nanobubble and subsequent formation of a lipid vesicle by coarse grained molecular dynamics simulations. A spherical nanobubble coated with a phospholipid monolayer in water is a model of an aqueous dispersion of phospholipids under negative pressure during sonication. When subjected to a positive pressure, the bubble shape deforms into an irregular spherical shape and the monolayer starts to buckle and fold locally. The local folds grow rapidly in multiple directions and forming a discoidal membrane with folds of various amplitudes. Folds of small amplitude disappear in due course and the membrane develops into a unilamellar vesicle via a bowl shape. Folds with large amplitude develop into a bowl shape and a multivesicular shape forms. The membrane shape due to bubble collapse can be an important factor governing the vesicular shape during sonication. |
---|