Cargando…
Bias Characterization in Probabilistic Genotype Data and Improved Signal Detection with Multiple Imputation
Missing data are an unavoidable component of modern statistical genetics. Different array or sequencing technologies cover different single nucleotide polymorphisms (SNPs), leading to a complicated mosaic pattern of missingness where both individual genotypes and entire SNPs are sporadically absent....
Autores principales: | Palmer, Cameron, Pe’er, Itsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910998/ https://www.ncbi.nlm.nih.gov/pubmed/27310603 http://dx.doi.org/10.1371/journal.pgen.1006091 |
Ejemplares similares
-
Statistical correction of the Winner’s Curse explains replication variability in quantitative trait genome-wide association studies
por: Palmer, Cameron, et al.
Publicado: (2017) -
Detecting Identity by Descent and Homozygosity Mapping in Whole-Exome Sequencing Data
por: Zhuang, Zhong, et al.
Publicado: (2012) -
MiSDEED: a synthetic data engine for microbiome study power analysis and study design
por: Chlenski, Philippe, et al.
Publicado: (2022) -
A Hidden Markov Model for Copy Number Variant prediction from whole genome resequencing data
por: Shen, Yufeng, et al.
Publicado: (2011) -
Variants in exons and in transcription factors affect gene expression in trans
por: Kreimer, Anat, et al.
Publicado: (2013)