Cargando…
Learning Universal Computations with Spikes
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity pa...
Autores principales: | Thalmeier, Dominik, Uhlmann, Marvin, Kappen, Hilbert J., Memmesheimer, Raoul-Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911146/ https://www.ncbi.nlm.nih.gov/pubmed/27309381 http://dx.doi.org/10.1371/journal.pcbi.1004895 |
Ejemplares similares
-
Non-Additive Coupling Enables Propagation of Synchronous Spiking Activity in Purely Random Networks
por: Memmesheimer, Raoul-Martin, et al.
Publicado: (2012) -
Non-additive coupling enables stable propagation of synchronous spiking in purely random networks
por: Memmesheimer, Raoul-Martin, et al.
Publicado: (2007) -
Purely STDP-based assembly dynamics: Stability, learning, overlaps, drift and aging
por: Manz, Paul, et al.
Publicado: (2023) -
Computational optimum of recurrent neural circuits at intermediate numbers of nonlinear dendritic branches
por: Breuer, David, et al.
Publicado: (2013) -
Emerging phenomena in neural networks with dynamic synapses and their computational implications
por: Torres, Joaquin J., et al.
Publicado: (2013)