Cargando…
Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers
In a rapidly changing world we need methods to efficiently assess biodiversity in order to monitor ecosystem trends. Ecological monitoring often uses plant community composition to infer quality of sites but conventional aboveground surveys only capture a snapshot of the actively growing plant diver...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911152/ https://www.ncbi.nlm.nih.gov/pubmed/27310720 http://dx.doi.org/10.1371/journal.pone.0157505 |
_version_ | 1782438095810985984 |
---|---|
author | Fahner, Nicole A. Shokralla, Shadi Baird, Donald J. Hajibabaei, Mehrdad |
author_facet | Fahner, Nicole A. Shokralla, Shadi Baird, Donald J. Hajibabaei, Mehrdad |
author_sort | Fahner, Nicole A. |
collection | PubMed |
description | In a rapidly changing world we need methods to efficiently assess biodiversity in order to monitor ecosystem trends. Ecological monitoring often uses plant community composition to infer quality of sites but conventional aboveground surveys only capture a snapshot of the actively growing plant diversity. Environmental DNA (eDNA) extracted from soil samples, however, can include taxa represented by both active and dormant tissues, seeds, pollen, and detritus. Analysis of this eDNA through DNA metabarcoding provides a more comprehensive view of plant diversity at a site from a single assessment but it is not clear which DNA markers are best used to capture this diversity. Sequence recovery, annotation, and sequence resolution among taxa were evaluated for four established DNA markers (matK, rbcL, ITS2, and the trnL P6 loop) in silico using database sequences and in situ using high throughput sequencing of 35 soil samples from a remote boreal wetland. Overall, ITS2 and rbcL are recommended for DNA metabarcoding of vascular plants from eDNA when not using customized or geographically restricted reference databases. We describe a new framework for evaluating DNA metabarcodes and, contrary to existing assumptions, we found that full length DNA barcode regions could outperform shorter markers for surveying plant diversity from soil samples. By using current DNA barcoding markers rbcL and ITS2 for plant metabarcoding, we can take advantage of existing resources such as the growing DNA barcode database. Our work establishes the value of standard DNA barcodes for soil plant eDNA analysis in ecological investigations and biomonitoring programs and supports the collaborative development of DNA barcoding and metabarcoding. |
format | Online Article Text |
id | pubmed-4911152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49111522016-07-06 Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers Fahner, Nicole A. Shokralla, Shadi Baird, Donald J. Hajibabaei, Mehrdad PLoS One Research Article In a rapidly changing world we need methods to efficiently assess biodiversity in order to monitor ecosystem trends. Ecological monitoring often uses plant community composition to infer quality of sites but conventional aboveground surveys only capture a snapshot of the actively growing plant diversity. Environmental DNA (eDNA) extracted from soil samples, however, can include taxa represented by both active and dormant tissues, seeds, pollen, and detritus. Analysis of this eDNA through DNA metabarcoding provides a more comprehensive view of plant diversity at a site from a single assessment but it is not clear which DNA markers are best used to capture this diversity. Sequence recovery, annotation, and sequence resolution among taxa were evaluated for four established DNA markers (matK, rbcL, ITS2, and the trnL P6 loop) in silico using database sequences and in situ using high throughput sequencing of 35 soil samples from a remote boreal wetland. Overall, ITS2 and rbcL are recommended for DNA metabarcoding of vascular plants from eDNA when not using customized or geographically restricted reference databases. We describe a new framework for evaluating DNA metabarcodes and, contrary to existing assumptions, we found that full length DNA barcode regions could outperform shorter markers for surveying plant diversity from soil samples. By using current DNA barcoding markers rbcL and ITS2 for plant metabarcoding, we can take advantage of existing resources such as the growing DNA barcode database. Our work establishes the value of standard DNA barcodes for soil plant eDNA analysis in ecological investigations and biomonitoring programs and supports the collaborative development of DNA barcoding and metabarcoding. Public Library of Science 2016-06-16 /pmc/articles/PMC4911152/ /pubmed/27310720 http://dx.doi.org/10.1371/journal.pone.0157505 Text en © 2016 Fahner et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fahner, Nicole A. Shokralla, Shadi Baird, Donald J. Hajibabaei, Mehrdad Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title_full | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title_fullStr | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title_full_unstemmed | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title_short | Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers |
title_sort | large-scale monitoring of plants through environmental dna metabarcoding of soil: recovery, resolution, and annotation of four dna markers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911152/ https://www.ncbi.nlm.nih.gov/pubmed/27310720 http://dx.doi.org/10.1371/journal.pone.0157505 |
work_keys_str_mv | AT fahnernicolea largescalemonitoringofplantsthroughenvironmentaldnametabarcodingofsoilrecoveryresolutionandannotationoffourdnamarkers AT shokrallashadi largescalemonitoringofplantsthroughenvironmentaldnametabarcodingofsoilrecoveryresolutionandannotationoffourdnamarkers AT bairddonaldj largescalemonitoringofplantsthroughenvironmentaldnametabarcodingofsoilrecoveryresolutionandannotationoffourdnamarkers AT hajibabaeimehrdad largescalemonitoringofplantsthroughenvironmentaldnametabarcodingofsoilrecoveryresolutionandannotationoffourdnamarkers |