Cargando…
Crowdsourcing the Measurement of Interstate Conflict
Much of the data used to measure conflict is extracted from news reports. This is typically accomplished using either expert coders to quantify the relevant information or machine coders to automatically extract data from documents. Although expert coding is costly, it produces quality data. Machine...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911154/ https://www.ncbi.nlm.nih.gov/pubmed/27310427 http://dx.doi.org/10.1371/journal.pone.0156527 |
_version_ | 1782438096301719552 |
---|---|
author | D’Orazio, Vito Kenwick, Michael Lane, Matthew Palmer, Glenn Reitter, David |
author_facet | D’Orazio, Vito Kenwick, Michael Lane, Matthew Palmer, Glenn Reitter, David |
author_sort | D’Orazio, Vito |
collection | PubMed |
description | Much of the data used to measure conflict is extracted from news reports. This is typically accomplished using either expert coders to quantify the relevant information or machine coders to automatically extract data from documents. Although expert coding is costly, it produces quality data. Machine coding is fast and inexpensive, but the data are noisy. To diminish the severity of this tradeoff, we introduce a method for analyzing news documents that uses crowdsourcing, supplemented with computational approaches. The new method is tested on documents about Militarized Interstate Disputes, and its accuracy ranges between about 68 and 76 percent. This is shown to be a considerable improvement over automated coding, and to cost less and be much faster than expert coding. |
format | Online Article Text |
id | pubmed-4911154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49111542016-07-06 Crowdsourcing the Measurement of Interstate Conflict D’Orazio, Vito Kenwick, Michael Lane, Matthew Palmer, Glenn Reitter, David PLoS One Research Article Much of the data used to measure conflict is extracted from news reports. This is typically accomplished using either expert coders to quantify the relevant information or machine coders to automatically extract data from documents. Although expert coding is costly, it produces quality data. Machine coding is fast and inexpensive, but the data are noisy. To diminish the severity of this tradeoff, we introduce a method for analyzing news documents that uses crowdsourcing, supplemented with computational approaches. The new method is tested on documents about Militarized Interstate Disputes, and its accuracy ranges between about 68 and 76 percent. This is shown to be a considerable improvement over automated coding, and to cost less and be much faster than expert coding. Public Library of Science 2016-06-16 /pmc/articles/PMC4911154/ /pubmed/27310427 http://dx.doi.org/10.1371/journal.pone.0156527 Text en © 2016 D’Orazio et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article D’Orazio, Vito Kenwick, Michael Lane, Matthew Palmer, Glenn Reitter, David Crowdsourcing the Measurement of Interstate Conflict |
title | Crowdsourcing the Measurement of Interstate Conflict |
title_full | Crowdsourcing the Measurement of Interstate Conflict |
title_fullStr | Crowdsourcing the Measurement of Interstate Conflict |
title_full_unstemmed | Crowdsourcing the Measurement of Interstate Conflict |
title_short | Crowdsourcing the Measurement of Interstate Conflict |
title_sort | crowdsourcing the measurement of interstate conflict |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911154/ https://www.ncbi.nlm.nih.gov/pubmed/27310427 http://dx.doi.org/10.1371/journal.pone.0156527 |
work_keys_str_mv | AT doraziovito crowdsourcingthemeasurementofinterstateconflict AT kenwickmichael crowdsourcingthemeasurementofinterstateconflict AT lanematthew crowdsourcingthemeasurementofinterstateconflict AT palmerglenn crowdsourcingthemeasurementofinterstateconflict AT reitterdavid crowdsourcingthemeasurementofinterstateconflict |