Cargando…
Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard
Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911156/ https://www.ncbi.nlm.nih.gov/pubmed/27310437 http://dx.doi.org/10.1371/journal.pone.0157646 |
_version_ | 1782438096774627328 |
---|---|
author | Yuan, Huwei Niu, Shihui El-Kassaby, Yousry A. Li, Yue Li, Wei |
author_facet | Yuan, Huwei Niu, Shihui El-Kassaby, Yousry A. Li, Yue Li, Wei |
author_sort | Yuan, Huwei |
collection | PubMed |
description | Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined open- and control-pollinated progeny of the first-generation Chinese pine seed orchards in Zhengning (Gansu Province, China) and Xixian (Shanxi Province, China) to address issues related to phenotypic selection for high volume growth, genetic diversity analysis and genetic distance-based phylogenetic analysis of the selections by simple sequence repeats (SSRs), and phylogenetic relationship-based field deployment for advanced-generation orchards. In total, 40, 28, 20, and 13 superior individuals were selected from the large-scale no-pedigree open-pollinated progeny of Zhengning (ZN-NP), open-pollinated families of Zhengning (ZN-OP), open-pollinated families of Xixian (XX-OP), and control-pollinated families of Xixian, with mean volume dominance ratios of 0.83, 0.15, 0.25, and 0.20, respectively. Phylogenetic relationship analysis of the ZN-NP and XX-OP populations showed that the 40 superior individuals in the ZN-NP selected population belonged to 23 families and could be further divided into five phylogenetic groups, and that families in the same group were closely related. Similarly, 20 families in the XX-OP population were related to varying degrees. Based on these results, we found that second-generation Chinese pine seed orchards in Zhengning and Xixian should adopt a grouped, unbalanced, complete, fixed block design and an unbalanced, incomplete, fixed block design, respectively. This study will provide practical references for applying molecular markers to establishing advanced-generation seed orchards. |
format | Online Article Text |
id | pubmed-4911156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49111562016-07-06 Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard Yuan, Huwei Niu, Shihui El-Kassaby, Yousry A. Li, Yue Li, Wei PLoS One Research Article Chinese pine seed orchards are in a period of transition from first-generation to advanced-generations. How to effectively select populations for second-generation seed orchards and significantly increase genetic gain through rational deployment have become major issues. In this study, we examined open- and control-pollinated progeny of the first-generation Chinese pine seed orchards in Zhengning (Gansu Province, China) and Xixian (Shanxi Province, China) to address issues related to phenotypic selection for high volume growth, genetic diversity analysis and genetic distance-based phylogenetic analysis of the selections by simple sequence repeats (SSRs), and phylogenetic relationship-based field deployment for advanced-generation orchards. In total, 40, 28, 20, and 13 superior individuals were selected from the large-scale no-pedigree open-pollinated progeny of Zhengning (ZN-NP), open-pollinated families of Zhengning (ZN-OP), open-pollinated families of Xixian (XX-OP), and control-pollinated families of Xixian, with mean volume dominance ratios of 0.83, 0.15, 0.25, and 0.20, respectively. Phylogenetic relationship analysis of the ZN-NP and XX-OP populations showed that the 40 superior individuals in the ZN-NP selected population belonged to 23 families and could be further divided into five phylogenetic groups, and that families in the same group were closely related. Similarly, 20 families in the XX-OP population were related to varying degrees. Based on these results, we found that second-generation Chinese pine seed orchards in Zhengning and Xixian should adopt a grouped, unbalanced, complete, fixed block design and an unbalanced, incomplete, fixed block design, respectively. This study will provide practical references for applying molecular markers to establishing advanced-generation seed orchards. Public Library of Science 2016-06-16 /pmc/articles/PMC4911156/ /pubmed/27310437 http://dx.doi.org/10.1371/journal.pone.0157646 Text en © 2016 Yuan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yuan, Huwei Niu, Shihui El-Kassaby, Yousry A. Li, Yue Li, Wei Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title | Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title_full | Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title_fullStr | Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title_full_unstemmed | Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title_short | Simple Genetic Distance-Optimized Field Deployments for Clonal Seed Orchards Based on Microsatellite Markers: As a Case of Chinese Pine Seed Orchard |
title_sort | simple genetic distance-optimized field deployments for clonal seed orchards based on microsatellite markers: as a case of chinese pine seed orchard |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911156/ https://www.ncbi.nlm.nih.gov/pubmed/27310437 http://dx.doi.org/10.1371/journal.pone.0157646 |
work_keys_str_mv | AT yuanhuwei simplegeneticdistanceoptimizedfielddeploymentsforclonalseedorchardsbasedonmicrosatellitemarkersasacaseofchinesepineseedorchard AT niushihui simplegeneticdistanceoptimizedfielddeploymentsforclonalseedorchardsbasedonmicrosatellitemarkersasacaseofchinesepineseedorchard AT elkassabyyousrya simplegeneticdistanceoptimizedfielddeploymentsforclonalseedorchardsbasedonmicrosatellitemarkersasacaseofchinesepineseedorchard AT liyue simplegeneticdistanceoptimizedfielddeploymentsforclonalseedorchardsbasedonmicrosatellitemarkersasacaseofchinesepineseedorchard AT liwei simplegeneticdistanceoptimizedfielddeploymentsforclonalseedorchardsbasedonmicrosatellitemarkersasacaseofchinesepineseedorchard |