Cargando…
Diversity, Community Composition and Abundance of Anammox Bacteria in Sediments of the North Marginal Seas of China
Over the past few decades, anammox bacteria have been recognized as key players that contribute significantly to the release of large amounts of nitrogen in the global marine nitrogen cycle. In the present study, the diversity, community composition, and abundance of anammox bacteria from the sedime...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912145/ https://www.ncbi.nlm.nih.gov/pubmed/27180640 http://dx.doi.org/10.1264/jsme2.ME15140 |
Sumario: | Over the past few decades, anammox bacteria have been recognized as key players that contribute significantly to the release of large amounts of nitrogen in the global marine nitrogen cycle. In the present study, the diversity, community composition, and abundance of anammox bacteria from the sediments of four diverse regions in the north marginal seas in China were determined via clone library construction and a quantitative PCR analysis. The clone libraries retrieved by the 16S rRNA gene and Hzo gene markers indicated that “Candidatus Scalindua” was the predominant group throughout the sites examined. The 16S rRNA gene clone libraries revealed exceptional diversity by identifying two potential novel anammox clades, as evidenced by the high sequence similarities between these two clades and known anammox genera, and their unique phylogenetic positions with high bootstrap values. However, their potential roles in the anammox reaction need to be validated. Six novel members of Planctomycetes, divergent from the known genera of anammox bacteria, were also detected. A phylogenetic analysis by Hzo protein sequences revealed the existence of two known genera, i.e., “Candidatus Jettenia” and “Candidatus Anammoxoglobus”, which are rarely captured from marine sediments. Among all ecological parameters investigated, the distribution patterns and composition of anammox bacteria were found to be influenced by salinity, total organic matter, and temperature. The abundance of the anammox bacterial 16S rRNA gene from the sites examined ranged between 3.95×10(5) and 9.21×10(5) copies g(−1) wet sediment and positively correlated with the median size of the sediment sample. |
---|