Cargando…
Gene expression prediction using low-rank matrix completion
BACKGROUND: An exponential growth of high-throughput biological information and data has occurred in the past decade, supported by technologies, such as microarrays and RNA-Seq. Most data generated using such methods are used to encode large amounts of rich information, and determine diagnostic and...
Autores principales: | Kapur, Arnav, Marwah, Kshitij, Alterovitz, Gil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912738/ https://www.ncbi.nlm.nih.gov/pubmed/27317252 http://dx.doi.org/10.1186/s12859-016-1106-6 |
Ejemplares similares
-
Context-Specific Ontology Integration: A Bayesian Approach
por: Marwah, Kshitij, et al.
Publicado: (2012) -
Overcoming the Straw Man Effect in Oncology: Visualization and Ranking of Chemotherapy Regimens Using an Information Theoretic Approach
por: Warner, Jeremy L., et al.
Publicado: (2017) -
A new method based on the manifold-alternative approximating for low-rank matrix completion
por: Ren, Fujiao, et al.
Publicado: (2018) -
An Automated Bayesian Framework for Integrative Gene Expression Analysis and Predictive Medicine
por: Parikh, Neena, et al.
Publicado: (2012) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017)