Cargando…
Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares
BACKGROUND: In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal wi...
Autores principales: | Zhang, Cheng, Zhang, Tao, Li, Ming, Peng, Chengtao, Liu, Zhaobang, Zheng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912768/ https://www.ncbi.nlm.nih.gov/pubmed/27316680 http://dx.doi.org/10.1186/s12938-016-0193-y |
Ejemplares similares
-
Iterative Reweighted Noninteger Norm Regularizing SVM for Gene Expression Data Classification
por: Liu, Jianwei, et al.
Publicado: (2013) -
ADMM-EM Method for L
(1)-Norm Regularized Weighted Least Squares PET Reconstruction
por: Teng, Yueyang, et al.
Publicado: (2016) -
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015) -
A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning
por: Zhang, Cheng, et al.
Publicado: (2015) -
Data reconstruction using iteratively reweighted L1-principal component analysis for an electronic nose system
por: Jeon, Hong-Min, et al.
Publicado: (2018)