Cargando…
Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration
Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913954/ https://www.ncbi.nlm.nih.gov/pubmed/27322539 http://dx.doi.org/10.1371/journal.pone.0157707 |
_version_ | 1782438485005697024 |
---|---|
author | Park, Donghee Song, Gillsoo Jo, Yongjun Won, Jongho Son, Taeyoon Cha, Ohrum Kim, Jinho Jung, Byungjo Park, Hyunjin Kim, Chul-Woo Seo, Jongbum |
author_facet | Park, Donghee Song, Gillsoo Jo, Yongjun Won, Jongho Son, Taeyoon Cha, Ohrum Kim, Jinho Jung, Byungjo Park, Hyunjin Kim, Chul-Woo Seo, Jongbum |
author_sort | Park, Donghee |
collection | PubMed |
description | Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the concentration of microbubbles in case stable cavitation is predominant. |
format | Online Article Text |
id | pubmed-4913954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49139542016-07-06 Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration Park, Donghee Song, Gillsoo Jo, Yongjun Won, Jongho Son, Taeyoon Cha, Ohrum Kim, Jinho Jung, Byungjo Park, Hyunjin Kim, Chul-Woo Seo, Jongbum PLoS One Research Article Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the concentration of microbubbles in case stable cavitation is predominant. Public Library of Science 2016-06-20 /pmc/articles/PMC4913954/ /pubmed/27322539 http://dx.doi.org/10.1371/journal.pone.0157707 Text en © 2016 Park et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Park, Donghee Song, Gillsoo Jo, Yongjun Won, Jongho Son, Taeyoon Cha, Ohrum Kim, Jinho Jung, Byungjo Park, Hyunjin Kim, Chul-Woo Seo, Jongbum Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title | Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title_full | Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title_fullStr | Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title_full_unstemmed | Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title_short | Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration |
title_sort | sonophoresis using ultrasound contrast agents: dependence on concentration |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913954/ https://www.ncbi.nlm.nih.gov/pubmed/27322539 http://dx.doi.org/10.1371/journal.pone.0157707 |
work_keys_str_mv | AT parkdonghee sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT songgillsoo sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT joyongjun sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT wonjongho sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT sontaeyoon sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT chaohrum sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT kimjinho sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT jungbyungjo sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT parkhyunjin sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT kimchulwoo sonophoresisusingultrasoundcontrastagentsdependenceonconcentration AT seojongbum sonophoresisusingultrasoundcontrastagentsdependenceonconcentration |