Cargando…
Local potentiation of stress-responsive genes by upstream noncoding transcription
It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914089/ https://www.ncbi.nlm.nih.gov/pubmed/26945040 http://dx.doi.org/10.1093/nar/gkw142 |
Sumario: | It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1. These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors. |
---|