Cargando…
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the functio...
Autores principales: | Quang, Daniel, Xie, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914104/ https://www.ncbi.nlm.nih.gov/pubmed/27084946 http://dx.doi.org/10.1093/nar/gkw226 |
Ejemplares similares
-
DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
por: Wang, Meng, et al.
Publicado: (2018) -
qDRIP: a method to quantitatively assess RNA–DNA hybrid formation genome-wide
por: Crossley, Magdalena P, et al.
Publicado: (2020) -
Thermophoretic melting curves quantify the conformation and stability of RNA and DNA
por: Wienken, Christoph J., et al.
Publicado: (2011) -
Convolutional neural network model to predict causal risk factors that share complex regulatory features
por: Lee, Taeyeop, et al.
Publicado: (2019) -
IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing
por: Deonovic, Benjamin, et al.
Publicado: (2017)