Cargando…
A new molecular signature method for prediction of driver cancer pathways from transcriptional data
Assigning cancer patients to the most effective treatments requires an understanding of the molecular basis of their disease. While DNA-based molecular profiling approaches have flourished over the past several years to transform our understanding of driver pathways across a broad range of tumors, a...
Autores principales: | Rykunov, Dmitry, Beckmann, Noam D., Li, Hui, Uzilov, Andrew, Schadt, Eric E., Reva, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914110/ https://www.ncbi.nlm.nih.gov/pubmed/27098033 http://dx.doi.org/10.1093/nar/gkw269 |
Ejemplares similares
-
Predicting the functional impact of protein mutations: application to cancer genomics
por: Reva, Boris, et al.
Publicado: (2011) -
A novel method for improved accuracy of transcription factor binding site prediction
por: Khamis, Abdullah M, et al.
Publicado: (2018) -
Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data
por: Essaghir, Ahmed, et al.
Publicado: (2010) -
DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies
por: Han, Yi, et al.
Publicado: (2019) -
Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (CT-RT)
por: Loudig, Olivier, et al.
Publicado: (2007)