Cargando…

Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo

Cas9, a CRISPR-associated RNA-guided nuclease, has been rapidly adopted as a tool for biochemical and genetic manipulation of DNA. Although complexes between Cas9 and guide RNAs (gRNAs) offer remarkable specificity and versatility for genome manipulation, mis-targeted events occur. To extend the und...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Becky X.H., St. Onge, Robert P., Fire, Andrew Z., Smith, Justin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914125/
https://www.ncbi.nlm.nih.gov/pubmed/27198218
http://dx.doi.org/10.1093/nar/gkw417
Descripción
Sumario:Cas9, a CRISPR-associated RNA-guided nuclease, has been rapidly adopted as a tool for biochemical and genetic manipulation of DNA. Although complexes between Cas9 and guide RNAs (gRNAs) offer remarkable specificity and versatility for genome manipulation, mis-targeted events occur. To extend the understanding of gRNA::target homology requirements, we compared mutational tolerance for a set of Cas9::gRNA complexes in vitro and in vivo (in Saccharomyces cerevisiae). A variety of gRNAs were tested with variant libraries based on four different targets (with varying GC content and sequence features). In each case, we challenged a mixture of matched and mismatched targets, evaluating cleavage activity on a wide variety of potential target sequences in parallel through high-throughput sequencing of the products retained after cleavage. These experiments evidenced notable and consistent differences between in vitro and S. cerevisiae (in vivo) Cas9 cleavage specificity profiles including (i) a greater tolerance for mismatches in vitro and (ii) a greater specificity increase in vivo with truncation of the gRNA homology regions.