Cargando…
Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier
Predicting protein subcellular location is necessary for understanding cell function. Several machine learning methods have been developed for computational prediction of primary protein sequences because wet experiments are costly and time consuming. However, two problems still exist in state-of-th...
Autores principales: | Guo, Xiaotong, Liu, Fulin, Ju, Ying, Wang, Zhen, Wang, Chunyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914962/ https://www.ncbi.nlm.nih.gov/pubmed/27323846 http://dx.doi.org/10.1038/srep28087 |
Ejemplares similares
-
Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble
por: Wang, Xiao, et al.
Publicado: (2015) -
Ensemble of Multiple Classifiers for Multilabel Classification of Plant Protein Subcellular Localization
por: Wattanapornprom, Warin, et al.
Publicado: (2021) -
iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins
por: Chou, Kuo-Chen, et al.
Publicado: (2011) -
A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites
por: Xiao, Xuan, et al.
Publicado: (2011) -
Multi-Label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization
por: Mei, Suyu
Publicado: (2012)