Cargando…
A Local Learning Rule for Independent Component Analysis
Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, thei...
Autores principales: | Isomura, Takuya, Toyoizumi, Taro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914970/ https://www.ncbi.nlm.nih.gov/pubmed/27323661 http://dx.doi.org/10.1038/srep28073 |
Ejemplares similares
-
Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis
por: Isomura, Takuya, et al.
Publicado: (2018) -
Multi-context blind source separation by error-gated Hebbian rule
por: Isomura, Takuya, et al.
Publicado: (2019) -
Learning Task-Related Activities From Independent Local-Field-Potential Components Across Motor Cortex Layers
por: Martín-Vázquez, Gonzalo, et al.
Publicado: (2018) -
Learning poly-synaptic paths with traveling waves
por: Ito, Yoshiki, et al.
Publicado: (2021) -
Interlaminar processing in auditory cortex before and after auditory trauma: spontaneous and evoked responses of independent sources
por: Munro, Erin, et al.
Publicado: (2013)