Cargando…

Josephson effects in the junction formed by DIII-class topological and s-wave superconductors with an embedded quantum dot

We investigate the Josephson effects in the junction formed by the indirect coupling between DIII-class topological and s-wave superconductors via an embedded quantum dot. Due to the presence of two kinds of superconductors, three dot-superconductor coupling manners are considered, respectively. As...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Zhen, Wang, Xiao-Qi, Shan, Wan-Fei, Wu, Hai-Na, Gong, Wei-Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915010/
https://www.ncbi.nlm.nih.gov/pubmed/27324426
http://dx.doi.org/10.1038/srep28311
Descripción
Sumario:We investigate the Josephson effects in the junction formed by the indirect coupling between DIII-class topological and s-wave superconductors via an embedded quantum dot. Due to the presence of two kinds of superconductors, three dot-superconductor coupling manners are considered, respectively. As a result, the Josephson current is found to oscillate in period 2π. More importantly, the presence of Majorana doublet in the DIII-class superconductor renders the current finite at the case of zero phase difference, with its sign determined by the fermion parity of such a junction. In addition, the dot-superconductor coupling plays a nontrivial role in adjusting the Josephson current. When the s-wave superconductor couples to the dot in the weak limit, the current direction will have an opportunity to reverse. It is believed that these results will be helpful for understanding the transport properties of the DIII-class superconductor.