Cargando…
An integrative imputation method based on multi-omics datasets
BACKGROUND: Integrative analysis of multi-omics data is becoming increasingly important to unravel functional mechanisms of complex diseases. However, the currently available multi-omics datasets inevitably suffer from missing values due to technical limitations and various constrains in experiments...
Autores principales: | Lin, Dongdong, Zhang, Jigang, Li, Jingyao, Xu, Chao, Deng, Hong-Wen, Wang, Yu-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915152/ https://www.ncbi.nlm.nih.gov/pubmed/27329642 http://dx.doi.org/10.1186/s12859-016-1122-6 |
Ejemplares similares
-
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020) -
Integrative analysis of multiple diverse omics datasets by sparse group multitask regression
por: Lin, Dongdong, et al.
Publicado: (2014) -
Group sparse canonical correlation analysis for genomic data integration
por: Lin, Dongdong, et al.
Publicado: (2013) -
A multivariate approach to the integration of multi-omics datasets
por: Meng, Chen, et al.
Publicado: (2014) -
Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework
por: Voillet, Valentin, et al.
Publicado: (2016)